Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.176
Filtrar
2.
Eur J Pharmacol ; 971: 176488, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458410

RESUMO

OBJECTIVE: Pathological cardiac remodelling, including cardiac hypertrophy and fibrosis, is a key pathological process in the development of heart failure. However, effective therapeutic approaches are limited. The ß-adrenergic receptors are pivotal signalling molecules in regulating cardiac function. G-alpha interacting protein (GAIP)-interacting protein, C-terminus 1 (GIPC1) is a multifunctional scaffold protein that directly binds to the C-terminus of ß1-adrenergic receptor (ß1-adrenergic receptor). However, little is known about its roles in heart function. Therefore, we investigated the role of GIPC1 in cardiac remodelling and its underlying molecular mechanisms. METHODS: Pathological cardiac remodelling in mice was established via intraperitoneal injection of isoprenaline for 14 d or transverse aortic constriction surgery for 8 weeks. Myh6-driving cardiomyocyte-specific GIPC1 conditional knockout (GIPC1 cKO) mice and adeno-associated virus 9 (AAV9)-mediated GIPC1 overexpression mice were used. The effect of GIPC1 on cardiac remodelling was assessed using echocardiographic, histological, and biochemical analyses. RESULTS: GIPC1 expression was consistently reduced in the cardiac remodelling model. GIPC1 cKO mice exhibited spontaneous abnormalities, including cardiac hypertrophy, fibrosis, and systolic dysfunction. In contrast, AAV9-mediated GIPC1 overexpression in the heart attenuated isoproterenol-induced pathological cardiac remodelling in mice. Mechanistically, GIPC1 interacted with the ß1-adrenergic receptor and stabilised its expression by preventing its ubiquitination and degradation, maintaining the balance of ß1-adrenergic receptor/ß2-adrenergic receptor, and inhibiting hyperactivation of the mitogen-activated protein kinase signalling pathway. CONCLUSIONS: These results suggested that GIPC1 plays a cardioprotective role and is a promising therapeutic target for the treatment of cardiac remodelling and heart failure.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Camundongos , Animais , Insuficiência Cardíaca/patologia , Miócitos Cardíacos , Cardiomegalia/patologia , Isoproterenol/efeitos adversos , Camundongos Knockout , Receptores Adrenérgicos beta/metabolismo , Fibrose , Camundongos Endogâmicos C57BL
3.
Mol Metab ; 81: 101899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346589

RESUMO

OBJECTIVE: Pompe disease (PD) is caused by deficiency of the lysosomal enzyme acid α-glucosidase (GAA), leading to progressive glycogen accumulation and severe myopathy with progressive muscle weakness. In the Infantile-Onset PD (IOPD), death generally occurs <1 year of age. There is no cure for IOPD. Mouse models of PD do not completely reproduce human IOPD severity. Our main objective was to generate the first IOPD rat model to assess an innovative muscle-directed adeno-associated viral (AAV) vector-mediated gene therapy. METHODS: PD rats were generated by CRISPR/Cas9 technology. The novel highly myotropic bioengineered capsid AAVMYO3 and an optimized muscle-specific promoter in conjunction with a transcriptional cis-regulatory element were used to achieve robust Gaa expression in the entire muscular system. Several metabolic, molecular, histopathological, and functional parameters were measured. RESULTS: PD rats showed early-onset widespread glycogen accumulation, hepato- and cardiomegaly, decreased body and tissue weight, severe impaired muscle function and decreased survival, closely resembling human IOPD. Treatment with AAVMYO3-Gaa vectors resulted in widespread expression of Gaa in muscle throughout the body, normalizing glycogen storage pathology, restoring muscle mass and strength, counteracting cardiomegaly and normalizing survival rate. CONCLUSIONS: This gene therapy holds great potential to treat glycogen metabolism alterations in IOPD. Moreover, the AAV-mediated approach may be exploited for other inherited muscle diseases, which also are limited by the inefficient widespread delivery of therapeutic transgenes throughout the muscular system.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Camundongos , Ratos , Humanos , Animais , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Músculo Esquelético/metabolismo , Glicogênio/metabolismo , Terapia Genética/métodos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/terapia
4.
J Mol Cell Cardiol ; 189: 12-24, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401179

RESUMO

Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.


Assuntos
Estenose da Valva Aórtica , Cardiomegalia , Animais , Camundongos , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Estenose da Valva Aórtica/metabolismo , Camundongos Knockout
5.
Circ Heart Fail ; 17(3): e010569, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38410978

RESUMO

BACKGROUND: Exercise training can promote cardiac rehabilitation, thereby reducing cardiovascular disease mortality and hospitalization rates. MicroRNAs (miRs) are closely related to heart disease, among which miR-574-3p plays an important role in myocardial remodeling, but its role in exercise-mediated cardioprotection is still unclear. METHODS: A mouse myocardial hypertrophy model was established by transverse aortic coarctation, and a 4-week swimming exercise training was performed 1 week after the operation. After swimming training, echocardiography was used to evaluate cardiac function in mice, and histopathologic staining was used to detect cardiac hypertrophy, myocardial fibrosis, and cardiac inflammation. Quantitative real-time polymerase chain reaction was used to detect the expression levels of miR-574-3p and cardiac hypertrophy markers. Western blotting detected the IL-6 (interleukin-6)/JAK/STAT inflammatory signaling pathway. RESULTS: Echocardiography and histochemical staining found that aerobic exercise significantly improved pressure overload-induced myocardial hypertrophy (n=6), myocardial interstitial fibrosis (n=6), and cardiac inflammation (n=6). Quantitative real-time polymerase chain reaction detection showed that aerobic exercise upregulated the expression level of miR-574-3p (n=6). After specific knockdown of miR-574-3p in mouse hearts with adeno-associated virus 9 using cardiac troponin T promoter, we found that the protective effect of exercise training on the heart was significantly reversed. Echocardiography and histopathologic staining showed that inhibiting the expression of miR-574-3p could partially block the effects of aerobic exercise on cardiac function (n=6), cardiomyocyte cross-sectional area (n=6), and myocardial fibrosis (n=6). Western blotting and immunohistochemical staining showed that the inhibitory effects of aerobic exercise on the IL-6/JAK/STAT pathway and cardiac inflammation were partially abolished after miR-574-3p knockdown. Furthermore, we also found that miR-574-3p exerts cardioprotective effects in cardiomyocytes by targeting IL-6 (n=3). CONCLUSIONS: Aerobic exercise protects cardiac hypertrophy and inflammation induced by pressure overload by upregulating miR-574-3p and inhibiting the IL-6/JAK/STAT pathway.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Miocardite , Camundongos , Animais , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Insuficiência Cardíaca/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomegalia/patologia , Miocardite/genética , Miocardite/prevenção & controle , Inflamação/patologia , Modelos Animais de Doenças , Fibrose
6.
Cell Mol Biol Lett ; 29(1): 3, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172650

RESUMO

BACKGROUND: Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS: Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS: The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS: Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.


Assuntos
MicroRNAs , RNA Circular , Humanos , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Isoproterenol , Cardiomegalia/genética , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo
7.
Curr Med Chem ; 31(11): 1404-1426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36876847

RESUMO

Heart failure (HF) is a public health issue that imposes high costs on healthcare systems. Despite the significant advances in therapies and prevention of HF, it remains a leading cause of morbidity and mortality worldwide. The current clinical diagnostic or prognostic biomarkers, as well as therapeutic strategies, have some limitations. Genetic and epigenetic factors have been identified to be central to the pathogenesis of HF. Therefore, they might provide promising novel diagnostic and therapeutic approaches for HF. Long non-coding RNAs (lncRNAs) belong to a group of RNAs that are produced by RNA polymerase II. These molecules play an important role in the functioning of different cell biological processes, such as transcription and regulation of gene expression. LncRNAs can affect different signaling pathways by targeting biological molecules or a variety of different cellular mechanisms. The alteration in their expression has been reported in different types of cardiovascular diseases, including HF, supporting the theory that they are important in the development and progression of heart diseases. Therefore, these molecules can be introduced as diagnostic, prognostic, and therapeutic biomarkers in HF. In this review, we summarize different lncRNAs as diagnostic, prognostic, and therapeutic biomarkers in HF. Moreover, we highlight various molecular mechanisms dysregulated by different lncRNAs in HF.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Cardiovasculares/diagnóstico , Biomarcadores
8.
Biomed Pharmacother ; 170: 116002, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091641

RESUMO

The heart undergoes pathological cardiac hypertrophy as an adaptive response to prolonged pathological stimulation, leading to cardiomyocyte hypertrophy, fibroblast proliferation, and an increase in extracellular matrix. Chinese medicine monomers are now receiving much attention for the treatment of cardiac hypertrophy and myocardial remodeling. Biochanin A (BCA) is a kind of flavonoid structural monomer, which has a certain therapeutic effect on bone thinning disease, aging syndrome, lung cancer, etc. Moreover, it exhibits hypoglycemic, anti-inflammatory, anti-oxidation, anti-bacteria and other pharmacological properties. It is still unknown whether BCA has an impact on the mechanism of TAC-induced cardiac hypertrophy. Here, cardiac remodeling was induced by TAC. BCA was injected intraperitoneally at 25 and 50 mg/kg/day one week in advance. Masson, WGA, DHE and other pathological staining and serum were used to detect the inhibitory effect of BCA on cardiac hypertrophy in mice. The anti-hypertrophic effect of BCA was demonstrated by studying the pathological manifestations of Neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (CFs) in vitro. The results showed that BCA significantly reduced TAC-induced fibrosis, inflammation, oxidative stress, and myocardial hypertrophy. BCA inhibited Ang II-induced cell hypertrophy and oxidative stress in NRCMs in vitro and Ang II-induced CF migration, proliferation, and collagen secretion. This suggests that BCA plays a key role in inhibiting the progression of myocardial remodeling, suggesting that BCA may be a promising agent for the treatment of myocardial hypertrophy and fibrosis.


Assuntos
Cardiomegalia , Miocárdio , Ratos , Camundongos , Animais , Cardiomegalia/patologia , Miocárdio/patologia , Miócitos Cardíacos , Fibrose , Camundongos Endogâmicos C57BL , Angiotensina II/farmacologia , Remodelação Ventricular
9.
Free Radic Res ; 58(1): 57-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38145457

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role against various cardiovascular diseases. Omaveloxolone is a newly discovered potent activator of Nrf2 that has a variety of cytoprotective functions. However, the potential role of omaveloxolone in the process of pathological cardiac hypertrophy and heart failure are still unknown. In this study, an isoproterenol (ISO)-induced pathological cardiac hypertrophy model was established to investigate the protective effect of omaveloxolone in vivo and in vitro. Our study first confirmed that omaveloxolone administration improved ISO-induced pathological cardiac hypertrophy in mice and neonatal cardiomyocytes. Omaveloxolone administration also diminished ISO-induced cardiac oxidative stress, inflammation and cardiomyocyte apoptosis. In addition, omaveloxolone administration activated the Nrf2 signaling pathway, and Nrf2 knockdown almost completely abolished the cardioprotective effect of omaveloxolone, indicated that the cardioprotective effect of omaveloxolone was directly related to the activation of the Nrf2 signaling. In summary, our study identified that omaveloxolone may be a promising therapeutic agent to mitigate pathological cardiac hypertrophy.


Assuntos
Cardiomegalia , Fator 2 Relacionado a NF-E2 , Triterpenos , Camundongos , Animais , Isoproterenol/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
10.
J Bioenerg Biomembr ; 56(2): 159-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158500

RESUMO

BACKGROUND: This study aimed to investigate the role of circSlc8a1 in cardiac hypertrophy (CH), a pathological change in various cardiovascular diseases. METHODS: An in vitro CH model was established using angiotensin II (AngII) treated H9c2 cells, followed by western blotting and RT-qPCR for detecting relative expressions. Cell viability and proliferation were analyzed using CCK-8 and EdU assays, while lactate dehydrogenase (LDH), reactive oxygen species (ROS), glutathione (GSH), and iron levels were determined using corresponding kits. Moreover, dual-luciferase reporter and RNA pull-down assays were performed to demonstrate whether miR-673-5p is bound to circSlc8a1 or transferrin receptor (TFRC). RESULTS: The results indicated that the expressions of circSlc8a1 and TFRC were increased, while miR-673-5p was decreased in the AngII treated H9c2 cells. The ferroptosis inhibitor treatment decreased the atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-major histocompatibility complex (ß-MHC) protein expressions, and circSlc8a1 expressions. Knocking down of circSlc8a1 inhibited promoted the cell viability and proliferation, increased the GSH content, glutathione peroxidase 4, and solute carrier family 7 member 11 protein expressions, and decreased the LDH, ROS, iron levels, and RAS protein expressions. The MiR-673-5p inhibitor antagonized the role of si-circSlc8a1, and the over-expressed TFRC reversed the miR-673-5p mimicking effects in AngII treated H9c2 cells. CONCLUSION: CircSlc8a1 promoted the ferroptosis in CH via regulating the miR-673-5p/TFRC axis.


Assuntos
Ferroptose , MicroRNAs , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Receptores da Transferrina , Ferro/metabolismo
11.
Acta Neuropathol Commun ; 11(1): 195, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087325

RESUMO

INTRODUCTION: Raspberries are cerebral microvascular formations of unknown origin, defined as three or more transversally sectioned vascular lumina surrounded by a common perivascular space. We have previously demonstrated an increased raspberry density in the cortex of patients with vascular dementia and cerebral atherosclerosis, while studies by other authors on overlapping and synonymously defined vascular entities mainly associate them with advancing age. The aim of the present study was to examine the relationship between raspberries and age in a large study sample while including multiple potential confounding factors in the analysis. MATERIALS AND METHODS: Our study sample consisted of 263 individuals aged 20-97 years who had undergone a clinical autopsy including a neuropathological examination. The cortical raspberry density had either been quantified as part of a previous study or was examined de novo in a uniform manner on haematoxylin- and eosin-stained tissue sections from the frontal lobe. The medical records and autopsy reports were assessed regarding neurodegeneration, cerebral infarcts, cerebral atherosclerosis and small vessel disease, cardiac hypertrophy, nephrosclerosis, hypertension, and diabetes mellitus. With the patients grouped according to 10-year age interval, non-parametric tests (the Kruskal-Wallis test, followed by pairwise testing with Bonferroni-corrected P values) and multiple linear regression models (not corrected for multiple tests) were performed. RESULTS: The average raspberry density increased with advancing age. The non-parametric tests demonstrated statistically significant differences in raspberry density when comparing the groups aged 60-99 years and 70-99 years to those aged 20-29 years (P < 0.012) and 30-59 years (P < 0.011), respectively. The multiple linear regression models demonstrated positive associations with age interval (P < 0.001), cerebral atherosclerosis (P = 0.024), cardiac hypertrophy (P = 0.021), hypertension subgrouped for organ damage (P = 0.006), and female sex (P = 0.004), and a tendency towards a negative association with Alzheimer's disease neuropathologic change (P = 0.048). CONCLUSION: The raspberry density of the frontal cortex increases with advancing age, but our results also indicate associations with acquired pathologies. Awareness of the biological and pathological context where raspberries occur can guide further research on their origin.


Assuntos
Doença de Alzheimer , Hipertensão , Arteriosclerose Intracraniana , Microvasos , Feminino , Humanos , Envelhecimento/patologia , Doença de Alzheimer/patologia , Encéfalo/patologia , Cardiomegalia/patologia , Hipertensão/patologia , Arteriosclerose Intracraniana/patologia , Microvasos/patologia , Microvasos/fisiopatologia , Masculino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais
12.
BMC Pediatr ; 23(1): 644, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114927

RESUMO

BACKGROUND: Cantu syndrome is a rare and complex multisystem disorder characterized by hypertrichosis, facial dysmorphism, osteochondroplasia and cardiac abnormalities. With only 150 cases reported worldwide, Cantu syndrome is now gaining wider recognition due to molecular testing and a growing body of literature that further characterizes the syndrome and some of its most important features. Cardiovascular pathology previously described in the literature include cardiomegaly, pericardial effusion, vascular dilation and tortuosity, and other congenital heart defects. However, cardiovascular involvement is highly variable amongst individuals with Cantu syndrome. In some instances, it can be extensive and severe requiring surgical management and long term follow up. CASE PRESENTATION: Herein we report a case of a fourteen-year-old female who presented with worsening pericardial effusion of unknown etiology, and echocardiographic findings of concentric left ventricular hypertrophy, a mildly dilated aortic root and ascending aorta. Her medical history was notable for hemoptysis and an episode of pulmonary hemorrhage secondary to multiple aortopulmonary collaterals that were subsequently embolized in early childhood. She was initially managed with Ibuprofen and Colchicine but continued to worsen, and ultimately required a pericardial window for the management of refractory pericardial effusion. Imaging studies obtained on subsequent visits revealed multiple dilated and tortuous blood vessels in the head, neck, chest, and pelvis. A cardiomyopathy molecular studies panel was sent, and a pathogenic variant was identified in the ABCC9 gene, confirming the molecular diagnosis of autosomal dominant Cantu syndrome. CONCLUSIONS: Vascular anomalies and significant cardiac involvement are often present in Cantu syndrome, however there are currently no established screening recommendations or surveillance protocols in place. The triad of hypertrichosis, facial dysmorphism, and unexplained cardiovascular involvement in any patient should raise suspicion for Cantu syndrome and warrant further investigation. Initial cardiac evaluation and follow up should be indicated in any patient with a clinical and/or molecular diagnosis of Cantu syndrome. Furthermore, whole body imaging should be utilized to evaluate the extent of vascular involvement and dictate long term monitoring and care.


Assuntos
Anormalidades Cardiovasculares , Hipertricose , Osteocondrodisplasias , Derrame Pericárdico , Malformações Vasculares , Adolescente , Feminino , Humanos , Cardiomegalia/complicações , Cardiomegalia/genética , Cardiomegalia/patologia , Hipertricose/diagnóstico , Hipertricose/genética , Hipertricose/patologia , Osteocondrodisplasias/complicações , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética , Derrame Pericárdico/diagnóstico por imagem , Derrame Pericárdico/etiologia
13.
Prenat Diagn ; 43(12): 1495-1505, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964422

RESUMO

Several factors associated with poor outcome in patients with prenatally diagnosed sacrococcygeal teratoma (SCT) have been found. However, the prognostic accuracy of these factors has not been well established. Therefore, we aimed to systematically review the prognostic accuracy of factors associated with poor outcome in these patients. We queried Search Premier, COCHRANE Library, EMCARE, EMBASE, PubMed, ScienceDirect, and Web of Science databases to identify studies regarding patients with prenatally diagnosed SCT. Poor outcome was defined as termination of pregnancy (TOP), intrauterine fetal death (IUFD), or perinatal death. We estimated the odds ratio of factors associated with poor outcome. Eleven studies (447 patients) were included. Overall mortality, including TOP, was 34.9%. Factors associated with poor outcome in fetuses with prenatally diagnosed SCT were cardiomegaly, hypervascular tumor, solid tumor morphology, fetal hydrops, and placentomegaly. A tumor volume to fetal weight ratio (TFR) of >0.12 before a gestational age of 24 weeks is predictive of poor outcome. The prognostic accuracy of factors associated with poor outcome in fetuses prenatally diagnosed with SCT seems promising. Factors associated with cardiac failure such as cardiomegaly, hypervascular tumor, solid tumor morphology, fetal hydrops, placentomegaly, and TFR >0.12 were found to be predictive of poor outcome.


Assuntos
Hidropisia Fetal , Teratoma , Gravidez , Feminino , Humanos , Lactente , Prognóstico , Hidropisia Fetal/patologia , Ultrassonografia Pré-Natal , Teratoma/diagnóstico por imagem , Teratoma/complicações , Cardiomegalia/complicações , Cardiomegalia/patologia , Região Sacrococcígea/diagnóstico por imagem
14.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 234-238, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37807306

RESUMO

To uncover the potential effect of Perindopril on cardiac fibrosis caused by pressure overload and the underlying mechanism. Cardiac fibrosis model in mice was established by TAC method. Mice were assigned into sham group, TAC group, 2 mg/kg Perindopril group (Per (2 mg/kg)) and 8 mg/kg Perindopril group (Per (8 mg/kg)). Cardiac structure changes were assessed by measuring HW/BW, HW/TBL, LW/BW and LW/TBL in each group. Echocardiography was performed to assess mouse cardiac function by recording EF, LVIDd, IVSd and LVPWd. Relative levels of fibrosis markers were determined. AngII content was examined by ELISA. Besides, mRNA levels of key genes in the AngII/AT1R pathway were finally detected. TAC induced cardiac insufficiency, left ventricular dilatation, cardiac hypertrophy and myocardial collagen deposition in mice. In addition, fibrosis markers were upregulated in mice of TAC group. Perindopril markedly reversed TAC-induced pathological changes in cardiac structure and function of mice. Meanwhile, Perindopril dose-dependently reversed the upregulated genes in the AngII/AT1R pathway. Perindopril improves cardiac fibrosis induced by pressure overload through activating the AngII/AT1R pathway.


Assuntos
Cardiomiopatias , Perindopril , Camundongos , Animais , Perindopril/farmacologia , Perindopril/uso terapêutico , Coração , Cardiomegalia/patologia , Cardiomiopatias/metabolismo , Miocárdio/metabolismo , Fibrose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
J Mol Histol ; 54(6): 675-687, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37899367

RESUMO

Pathological cardiac hypertrophy (CH) is featured by myocyte enlargement and cardiac malfunction. Multiple signaling pathways have been implicated in diverse pathological and physiological processes in CH. However, the function of LOC102549726/miR-760-3p network in CH remains unclear. Here, we characterize the functional role of LOC102549726/miR-760-3p network in CH and delineate the underlying mechanism. The expression of LncRNA LOC102549726 and hypertrophic markers was significantly increased compared to the control, while the level of miR-760-3p was decreased. Next, we examined ER stress response in a hypertrophic cardiomyocyte model. The expression of ER stress markers was greatly enhanced after incubation with ISO. The hypertrophic reaction, ER stress response, and increased potassium and calcium ion channels were alleviated by genetic downregulation of LOC102549726. It has been demonstrated that LOC102549726 functions as a competitive endogenous RNA (ceRNA) of miR-760-3p. Overexpression of miR-760-3p decreased cell surface area and substantially mitigated ER stress response; protein levels of potassium and calcium channels were also significantly up-regulated compared to the NC control. In contrast, miR-760-3p inhibition increased cell size, aggravated CH and ER stress responses, and reduced ion channels. Collectively, in this study we demonstrated that the LOC102549726/miR-760-3p network was a crucial regulator of CH development. Ion channels mediate the ER stress response and may be a downstream sensor of the LOC102549726/miR-760-3p network. Therefore, these findings advance our understanding of pathological CH and provide new insights into therapeutic targets for cardiac remodeling.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Humanos , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiopatias Congênitas/metabolismo , Estresse do Retículo Endoplasmático , Canais Iônicos/metabolismo , Potássio/metabolismo
16.
Amino Acids ; 55(11): 1573-1585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696999

RESUMO

Ventricular remodeling is one of the main causes of mortality from heart failure due to hypertension. Exploring its mechanism and finding therapeutic targets have become urgent scientific problems to be solved. A number of studies have shown that Mas, as an Ang-(1-7) specific receptor, was significantly reduced in myocardial tissue of rats undergoing hypertensive ventricular remodeling. It has been reported that Mas receptor levels are significantly downregulated in myocardium undergoing ventricular remodeling, but studies focused on intracellular and post-translational modifications of Mas are lacking. The results of this research are as follows: (1) PDZK1 interacts with the carboxyl terminus of Mas through its PDZ1 domain; (2) the expression of PDZK1 and Mas is decreased in rats undergoing hypertensive ventricular remodeling, and PDZK1 upregulation can ameliorate hypertensive myocardial fibrosis and myocardial hypertrophy; (3) PDZK1 enhances the stability of Mas protein through the proteasome pathway, and the proteasome inhibitor MG132 promotes hypertensive ventricular remodeling. PDZK1 improves ventricular remodeling in hypertensive rats by regulating Mas receptor stability. This study provides a scientific basis for the prevention and treatment of ventricular remodeling.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Ratos , Cardiomegalia/patologia , Fibrose , Insuficiência Cardíaca/patologia , Hipertensão/tratamento farmacológico , Hipertensão/genética , Miocárdio/patologia , Remodelação Ventricular
17.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650260

RESUMO

Cardiac remodeling serves as the underlying pathological basis for numerous cardiovascular diseases and represents a pivotal stage for intervention. The excessive activation of ß-adrenergic receptors (ß-ARs) assumes a crucial role in cardiac remodeling. Nonetheless, the underlying molecular mechanisms governing ß-AR-induced cardiac remodeling remain largely unresolved. In the present study, we identified Src tyrosine kinase as a key player in the cardiac remodeling triggered by excessive ß-AR activation. Our findings demonstrated that Src mediates isoproterenol (ISO)-induced cardiac hypertrophy, fibrosis, and inflammation in vivo. Furthermore, Src facilitates ß-AR-mediated proliferation and transdifferentiation of cardiac fibroblasts, and hypertrophy and cardiomyocytes in vitro. Subsequent investigations have substantiated that Src mediates ß-AR induced the extracellular signal-regulated protein kinase (ERK1/2) signaling pathway activated by ß-AR. Our research presents compelling evidence that Src promotes ß-AR-induced cardiac remodeling in both in vivo and in vitro settings. It establishes the promoting effect of the ß-AR/Src/ERK signaling pathway on overall cardiac remodeling in cardiac fibroblasts and underscores the potential of Src as a therapeutic target for cardiac remodeling.


Assuntos
Remodelação Ventricular , Quinases da Família src , Humanos , Quinases da Família src/genética , Miócitos Cardíacos/patologia , Receptores Adrenérgicos beta , Cardiomegalia/patologia
18.
Cell Commun Signal ; 21(1): 181, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488545

RESUMO

Alamandine (Ala), a ligand of Mas-related G protein-coupled receptor, member D (MrgD), alleviates angiotensin II (AngII)-induced cardiac hypertrophy. However, the specific physiological and pathological role of MrgD is not yet elucidated. Here, we found that MrgD expression increased under various pathological conditions. Then, MrgD knockdown prevented AngII-induced cardiac hypertrophy and fibrosis via inactivating Gαi-mediacted downstream signaling pathways, including the phosphorylation of p38 (p-P38), while MrgD overexpression induced pathological cardiac remodeling. Next, Ala, like silencing MrgD, exerted its cardioprotective effects by inhibiting Ang II-induced nuclear import of MrgD. MrgD interacted with p-P38 and promoted its entry into the nucleus under Ang II stimulation. Our results indicated that Ala was a blocking ligand of MrgD that inhibited downstream signaling pathway, which unveiled the promising cardioprotective effect of silencing MrgD expression on alleviating cardiac remodeling. Video Abstract.


Assuntos
Receptores Acoplados a Proteínas G , Remodelação Ventricular , Humanos , Ligantes , Transporte Ativo do Núcleo Celular , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/farmacologia , Cardiomegalia/patologia
19.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443814

RESUMO

Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Humanos , Células Endoteliais/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Fibrose
20.
Eur J Pharmacol ; 953: 175841, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329972

RESUMO

Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo were performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all-atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.


Assuntos
Insuficiência Cardíaca , PPAR gama , Humanos , PPAR gama/metabolismo , Interleucina-6 , Agonistas PPAR-gama , Simulação de Acoplamento Molecular , Cardiomegalia/patologia , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...